Théorème de Cartan-Von Neumann

Théorème. Soit $G \subset GL_N(\mathbb{R})$ un sous-groupe fermé. Alors c'est une sous-variété \mathcal{C}^{∞} de $M_N(\mathbb{R})$.

 $D\acute{e}monstration$. On cherche une trivialisation locale en l'identité, puis on se ramènera à ce cas en tout point de G.

Lemme. Pour tout $A, B \in M_N(\mathbb{R}), \left(\exp\left(\frac{A}{n}\right)\exp\left(\frac{B}{n}\right)\right)^n \to \exp(A+B).$

Démonstration. On a

$$\exp\left(\frac{A}{n}\right)\exp\left(\frac{B}{n}\right) = \left(I + \frac{A}{n} + \mathcal{O}(\frac{1}{n^2})\right)\left(I + \frac{B}{n} + \mathcal{O}(\frac{1}{n^2})\right) = I + \frac{A+B}{n} + \mathcal{O}(\frac{1}{n^2})$$

Pour n assez grand, $||I - \exp\left(\frac{A}{n}\right) \exp\left(\frac{B}{n}\right)|| < 1$; $\log\left(\exp\left(\frac{A}{n}\right) \exp\left(\frac{B}{n}\right)\right)$ est bien défini et admet le développement asymptotique $\frac{A+B}{n} + \mathcal{O}(\frac{1}{n^2})$. Ainsi :

$$\left(\exp\left(\frac{A}{n}\right)\exp\left(\frac{B}{n}\right)\right)^n = \exp\left(n\left(\frac{A+B}{n} + \mathcal{O}\left(\frac{1}{n^2}\right)\right)\right) \to \exp(A+B)$$

Soit $V = \{H \in M_n(\mathbb{R}) | \forall t \in \mathbb{R}, \exp(tH) \in G\}$. Vérifions que V est un espace vectoriel : V est bien homogène et si $v, w \in V$, alors pour tout $t \in \mathbb{R}$, et pour tout $n \in \mathbb{N}^*$, $\left(\exp\left(\frac{tv}{n}\right)\exp\left(\frac{tw}{n}\right)\right)^n \in G$. Comme G est fermé, en utilisant le lemme, on obtient que $\exp(t(v+w)) \in G$ pour tout t, donc $v+w \in V$.

Soit W un supplémentaire de V dans $M_N(\mathbb{R})$, on définit la le redressement local ϕ par :

$$\phi: \begin{cases} V \oplus W \to M_n(\mathbb{R}) \\ v + w \mapsto \exp(v) \exp(w) \end{cases}$$

Un développement limité de ϕ en 0 donne $D\phi(0)=Id_{M_n(\mathbb{R})}$. En particulier, par théorème d'inversion locale, il existe \mathcal{U} un voisinage de 0 tel que $\phi_{|\mathcal{U}}$ est un difféomorphisme sur son image. Il reste à vérifier que c'est bien un redressement de G.

- $\phi(\mathcal{U} \cap V) \subset \phi(\mathcal{U}) \cap G$ par définition de V.
- Réciproquement, si pour tout r > 0 (assez petit tel que la boule de centre 0 de rayon r, notée B_r , soit dans \mathcal{U}), $\phi(B_r) \cap G \nsubseteq \phi(B_r \cap V)$, alors en considérant une suite $r_n \to 0$, on obtient une suite $v_n + w_n$ qui tend vers 0 telle que $\phi(v_n + w_n) \in G$ pour tout n et $w_n \neq 0$. On a donc pour tout n, $\exp(w_n) \in G$.

On a $w_n \to 0$ et par compacité de la sphère unité, on suppose que $\frac{w_n}{\|w_n\|}$ converge vers

un certain $u \in W$ de norme 1. $w_n \to 0$ donne $g_n \to I$. Soient $t \in \mathbb{R}$, $k_n = \lfloor \frac{t}{\|w_n\|} \rfloor_i n\mathbb{Z}$, $r_n = \frac{t}{\|w_n\|} - k_n \in [0, 1[$, on écrit

$$\exp(tu) = \lim_{n \to \infty} \exp\left(t \frac{w_n}{\|w_n\|}\right)$$
$$= \lim_{n \to \infty} \exp(k_n w_n) \exp(r_n w_n)$$
$$= \lim_{n \to \infty} \exp(w_n)^{k_n}$$

Donc $\exp(tu)$ est dans G par fermeture de G; u est dans V et W et de norme 1, ce qui est absurde. Il existe donc un r > 0 assez petit pour que $\phi(B_r) \cap G = \phi(B_r \cap V)$.=, et G est bien une soit-variété au voisinage de I.

Soit maintenant $g \in G$, on considère le redressement $\phi_g : h \mapsto g\phi(h)$, ce qui achève la preuve.

Référence : Gonnord-Tosel